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1. Introduction

In trying to discover possible nonlinear PDEs that could be solved using our real
exponential approach (Hereman et al 1985, 1986), we stumbled upon the Harry Dym (HD)
equation rt = r7r 3s that has nonlinearity and dispersion coupled together. This prototype
of an evolution equation, that admits a cusp solitary wave solution (Wadati et al 1980),
appears in many disguises, namely, rt = (1 - r)srs., rt = (r2-)s. and (r 2)t = (r-')3.
The first one is occasionally referred to as the cusp-soliton equation (Kawamoto 1984a,b,
1985a). True, it failed to fit in our scheme but it certainly kindled our interest. According to
some of the early references (Kruskal 1975, Magri 1978, Wadati et al 1979, 1980, Sabatier
1979a,b, Dijkhuis and Drohm 1979, Case 1982, Yi-Shen 1982, Calogero and Degasperis
1982) the origin of the HD lies in various private communications with Harry Dym. In
search of truth, we contacted Dr. Harry Dym who replied, "In the spring of 1974, ...
Martin Kruskal delivered a few lectures on the isospectral theory. ... Motivated by these
lectures, I developed some analogues for the string equation. The HD equation, as Martin
later termed it, was one of the outcomes." Their collaboration resulted in developing a
draft of "a fairly complete theory" which is "gathering dust" in Dr. Kruskal's office.

From the fact files, the HD is a completely integrable nonlinear evolution equation
(Wadati et of 1979, 1980) which can be solved by the Inverse Scattering Transform (IST).
Dijkhuis and Drohm (1979) and Calogero and Degasperis (1982) discuss the HD equation
as a special case of a new broad class of nonlinear PDEs tractable by IST. The HD has a bi-
Hamiltonian structure (Magri 1978, Case 1982, Olver 1986); it possesses an infinite number
of conservation laws and infinitely many symmetries (Magri 1978, Ibragimov 1985, Olver
1986); and reciprocal Bicklund transformations (Rogers and Nucci 1986, Nucci 1988).

* Supported in part by the Air Force Office of Scientific Research under Grant No.

85-O263
+ On leave of absence from Department of Electrical Engineering, Syracuse University,

Syracuse, NY 13244, USA. Supported in part by the National Science Foundation under
Grant no. ECS-8603643, the National Science Foundation Presidential Young Investigator
Award under Grant no. MIP 8657765 and a matching grant from Xerox Corporation, a
grant from the Rome Air Force Development Center, and from the Air Force Office of
Scientific Research under Grant no. 85-NM-0263.
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However the HD equation does not possess the Painlevi property (Weiss 1983, 1986, Steeb
and Louw 1987, Fokas 1987, Hereman and Van den Bulck 1988) indicating that the Painlev6
property is at most sufficient, but not neccesary, for integrability.

Yi-Shen (1982) and Sabatier (1979a, b, 1980) recall the derivation of the HD equation.
The first author starts from the isospectral equation modelling the classical string problem
with a varying elastic constant. Sabatier independently rediscovers the HD and its general-
isations within the Lax formalism (Lax 1968). In order to make this paper a self-contained
tutorial of the HD equation, we shall first review and simplify these calculations, and alsn
include a heuristic derivation of the HD to provide some physical motivation.

Amongst the first researchers to study the connections between the HD and the KdV
equations we mention Ibragimov (1981, 1985) Calogero and Degasperis (1982) and Weiss
(1983, 1986). Later on Kawamoto (1985b), Rogers and Nucci (1986) and Steeb and Louw
(1987) investigated the links to the mKdV equation. Underlying all these connections,
there exists a rigorous though involved Lie-Bicklund algebra. Excellent references on this
approach are in books by Ibragimov (1985) and Olver (1986). In keeping with a tutorial
point of view, we therefore recognise the need for uniformisation and simplification of these
connections in order to provide a better insight. Also, as part of our simplifying efforts, we
rederive the implicit solution to the HD equation in the simplest possible way, without the
aid of heavy machinery like the IST. We obtain a particular exact solution which cannot,
however, be expressed in closed form owing to the presence of a transcendental phase.
Although the links between the equations have been extensively studied, limited attention
has been paid to connections between the various solutions. In our opinion this is vital,
since a customary technique in nonlinear science is to generate solutions to a nonlinear
PDE, from known solutions of another.

The organisation of this paper is as follows. In Section 2, we first formally derive
the HD from the string problem with a varying elastic constant and where the eigenvalue
X is constant w.r.t. a parameter t. We next employ the Lax operator technique for this
isospectral eigenvalue problem. Lastly, we retrieve the HD by a heuristic method. This
involves the derivation of the linear part of the PDE from the known dispersion relation,
and suitable modification of the coefficients to account for nonlinear effects.

As stated earlier, the HD is conventionally solved using IST. We present, in Section
3, a novel direct integration method to construct the implicit cusp-type single solitary
wave solution of the HD equation. Guided by an a priori knowledge of the final result, we
assume a form of the solution which is inherently implicit. Mathematically speaking, this
is achieved by a change of variable that depends on the solution of the equation itself. As
will be explained later, the introduction of this type of variable is commensurate with the
physical basis for implicit solutions of other nonlinear PDEs, viz., the nonlinear kinematic
equation (for other examples see e.g. Wadati et al 1979, 1980 and Kawamoto 1984a, b.
1985a).

Now, the HD equation has intriguing links with other nonlinear evolution equations,
viz., the ubiquitous KdV, and a Liouville-type equation (Hereman and Banerjee 1988).
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In Section 4, we therefore summarise some of the existing links between the HD and
the KdV by transforming one into the other and by providing the connections between
the corresponding eigenvalue problems. Scattered work done by Ibragimov (1981, 1985),
Weiss (1983, 1986) and Kawamoto (1985b) have contributed to the overall picture we
draw in this section. The procedures we employ comprise the Bicklund transformation
method, a technique involving the Schwarzian derivative, and the Cole-Hopf and Miura
transformations. Every procedure above needs to be augmented by either an explicit-to-
implicit or an implicit-to-explicit transformation. It is thus not surprising that the single
solitary wave solution to the HD is an implicit one. For a better understanding we compare,
wherever possible, different steps in every conversion procedure. For instance, it is realised
that the Schwarzian derivative, which occurs here in the context of PainrevI analysis, may
be conceived of as a combination of the Miura and the Cole-Hopf transformations.

We next turn to transforming the known solution(s) of one equation to that of the
other. This is accomplished in Section 5. Of particular interest is the case where, by
starting from the cusp-soliton solution of the HD, we are able to derive a new closed form,
though singular, solution of the KdV equation.

2. Derivation of the Harry Dym equation

In this Section we shall derive the HD equation by (a) starting from the classical string
problem, (b) employing the Lax operator technique and (c) using a heuristic approach.

Method (a):

Consider the ODE
A

2= t) (1)

which models the classical string problem where the string, for instance, has a varying elas-
tic constant (Sabatier 1979a, b, 1980, Dijkhuis and Drohm 1979, Yi-Shen 1982, Calogero
and Degasperis 1982). In (1), A denotes the eigenvalue and r(z;t) is a bounded, positive
function of z. Furthermore, we assume that r(z;t) --+ 0 as IjI -. oo. For r(z; t) = 1, Eq.
(1) reduces to the standard Schr6dinger equation. If r(z;t) $ 1, Eq. (1) can be trans-
formed back to that standard equation by a suitable change of variables (see Section 4).
Both r and 01 depend on the parameter t. In order to find an integral representation for
the solution of (1) that also incorporates the conditions, we first reduce (1) to an equivalent
system of first-order equations. Defining 02 = 01,., Eq. (1) may then be rewritten as

T'= 3  P (2a) ,

where

3
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We remark here that the above decomposition is not unique in the sense that the state
variables 01 and 02 could be chosen differently.

It was noted by Schlesinger (1912) that solvable nonlinear PDEs arise as the integra-

bility conditions when a linear ODE as in (2) is deformed to, for instance,

in such a way as to preserve some characteristic (for instance, the spectrum A) of the

equation. Thus, setting At = 0 (isospectral case), the integrability conditions

T =t = q't, (4)

yield the structure equation
Mt - N, + [M,N] = 0, (5)

where we define the commutator [M, N] = MN - NM. Incorporating the explicit forms
for M and N (from (2b) and (3)) leads to four coupled equations, one of which describes
the evolution of r(z, t)

C+r2B =A,, (6a)

D- A = B., (6b)

_ A D
(2L -+ ) = C, (6c)

A
r2 C(6d)

From (6a) and (6d), it follows that

D =-A, (7)

where we have neglected a constant of integration. Using (6a,b) and (7) in (6c), the
evolution of r may be rewritten as

-=--B 3 + rB--. (8)
r3 4A r3 2

The choice B = -4Ar (Yi-Shen 1982) leads straightforwardly to the HD equation

rt = r3 r8 =. (9)

Method (b):

)Following Lax (1968), we can derive an eigenvaue problem of the type L, = , with
At =0 for a nonlinear evolution equation expressible in the form

L= [B, LI, (10)

4
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where L and B are linear spatial operators (respectively symmetric self-adjoint, and anti-
symmetric) which may depend on r and its spatial derivatives. Now the ODE (1) may be
modified to

_ d2 +
[rm_2 dx~r ]p + = 0, (11)

where , is a new wave function defined as = ,ki/rm, and where m is an integer. From
the constraint of self-adjointness, it readily follows that m = 1, yielding

d2
L = r' 2 r, (12)

so that (10) becomes

L + L [B,L). (13)
r r

To construct the antisymmetric operator B, we set, following Sabatier (1979b),

B = AL+LA (14)

where A is antisymmetric; thus [B,L] = [A,L]L+ L[A,L]. Comparing with (13), it follows
that

[A,L- ,(15)

provided the LHS of the above equation reduces to a multiplicative operator and (15)
yields the required nonlinear PDE. Noting that

L = (rd)(±r) = ST, (16)
dx dx

we set A = S + T, so that

[A,L] = S[S,T] - [S,T]T

= [S, [S, TI + [S,T](S - T)
= r(rr2,), - rrzr 2=
= r2r3z, (17)

where we have used the observations T - S = r and [S, T] = rr2z. From (15) and (17),
the HD equation (9) follows.

Method (c):

The heuristic approach to constructing nonlinear evolution and wave equations in-
volves deriving the linear PDE from a (known) dispersion relation and, thereafter, in-
corporating nonlinear corrections to the (linear) phase velocity co (Korpel and Banerjee
1984). Consider the dispersion relation

w = cok - yk3 . (18)



where w denotes the angular frequency and k the propagation constant. The linear PDE is
obtained through replacing w and k by their respective operators W -- -ia/8t, k -- ia/ai
in (18):

Fi + CoFi + +'Fy 3 = 0. (19)

The nonlinear extension is now done by assuming that -y, instead of co, is a nonlincar
function of F

1 = IBF3 , (20)

where -ys is constant. Incorporating this in (19) together with the scalings

x= - cot, t = , r(z,t) = -(,Iy 3 ) F(i, ), (21)

we readily retrieve the HD equation as in (9).

3. Derivation of the implicit single solitary wave solution

In this section, we employ direct integration to construct the (implicit) one solitary
wave solution of the HD equation previously found by Wadati et al (1980) using the IST.
We are guided by the fact that the solitary wave solution has a singularity in its derivative
at its (bounded) peak value owing to the presence of a transcendental phase c(z, t) (see
figure 1). We therefore seek for a solution to (9) in the form

r(z,t) = F(f) (22a)

where
f(z,t) = K(z - zo + Vt) + KE(z,t) (22b)

with
Kc(z,t) = G(f). (22c)

In the above scheme, xo is a constant, K is the wavenumber and V is the anticipated
velocity of the solitary wave.

At this point, we wish to speculate on the physical basis of implicit solutions of
nonlinear PDEs in general. Readers are reminded here of the real exponential approach to
solving nonlinear evolution and wave equations (Korpel 1978, Hereman et al 1985, 1986)
where the final solution is assumed to be built up from the nonlinear mixings of real
exponential solutions to the linear dispcrsie part of the PDE. Alternatively, we may think
of constructing a particular solution from the solution to the nonlinear nondispersive part
of the PDE. This is a valid conjecture, since the nonlinear nondispersive part of, say, the
KdV equation in u (X, T), I , the nonlinear kinematic equation (Whitham 1974),

UT + aUux = 0, (23)

6



possesses shock wave solutions that are intrinsically implicit:

u(X,T) = g(X - cfu(X,T)T). (24)

In a more general sense, we may therefore think of solutions to the entire nonlinear dis-
persive PDE to be of the form (Banerjee and Hereman 1988a)

u(X,T) = F(f) (25a)

with
f(X,T) = HI(f)X- H(f)T + H(f). (25b)

Examining (22), we note that it fits the scheme described above.

Returning to the construction of the implicit solution to (9), we first note from (22)
that

a KV d a K di- =-(1--G ) W, x-=(I-- _Gf) d-f (26)

Eq. (9) then transforms to

V Ff d 1. d) FfVF -T3 (1 )d (- --- f)] =-0. (27)

A first integration, followed by multiplication by F and a subsequent integration yields

2 V (1 - Gf)2  (28)
F1

2 =ci(l-Gf) F+C 2 (1-G) +K2 F (

where C1, C2 are integration constants.

To solve for F, we must first eliminate G from (28) by assuming a relation between
G! and F. The obvious choice,

I-o 0 =F, (29)

reduces (28) to an ODE which can be readily solved either by employing the real expo-
nential approach (Hereman et al 1985, 1986) or by direct integration. Using the latter, we
get

f= (2- 2F F + ciF 3 ) dF, (30)

where the integration constant can be absorbed in zo. For the choice

V 2V
C- j, C2 (31)

Eq. (30) may be readily evaluated as

F(f) -tanh ( -). (32a)

7
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From (29) we then obtain
2K t = , V/V.

G() = tanh(- . (32b)
vVV 2K

For later use, we write down the implicit solution to the HD equation in the original
variables x and t :

vVr(x,t) = tanh2 [q (- xo + Vt + e(x,t))] (33a)
2

with
2 v/V

e(x,t) = - tanh[-(x - zo + Vt + e(z,t))j. (33b)
v/,V 2

This type of cusp-soliton solution (which is plotted in figure 1) has also been obtained
for coupled systems of evolutions equations. Kawamoto (1984a,b, 1985a) discusses two
examples : an Ito-type system and a normalised Boussinesq equation.

4. Connections between the HD and the KdV equations

Having derived the cusp-solitary wave solution to the HD, we would like to investigate
how this solution maps to particular (hopefully new) solutions of the KdV. Toward this
goal, we first reconstruct the transformations between the HD and the KdV equations
according to the following scheme:

(1) by deriving the RD from the KdV equation using
(i) the Bicklund transformation obtained by Weiss (1983, 1986),

(ii) the Schwarzian transformation proposed by Ibragimov (1981, 1985);
(2) by retracting the KdV from the HD using the Cole-Hopf and the Miura transforma-

tions as suggested by Kawamoto (1985b);
(3) by transforming the spectral problem associated with the HD equation to the one for

the KdV equation (Calogero and Degasperis 1982).

We remark that in addition to every transformation above, we need an explicit (im-
plicit) to implicit (explicit) transformation in going from the KdV (HD) to the HD (KdV).
This explains why the solitary wave solution of the HD equation is implicit in nature.
Detailed calculations on the conversion of the cusp-soliton solution of the HD to particular
solutions of KdV (and vice versa) will be presented in Section 5.

4.1. Transformation from the KdV to HD

(i) Bicklund transformation method.

This conversion process from the KdV to the HD can be summarized in the following
three steps :

1. We first use the auto-Bicklund transformation

12
u(X,T) = -[In O(X,T)12 x + U2 (X,T) (34)

8
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derived by Weiss (1983, 1986) in the context of the weak Painlev6 analysis of the KdV
equation

UT + aUX + U3x = O. (35)

The function 4(X, T) plays a crucial role as a singular or pole manifold (Newell et al
1987) in the Painlev6 formalism and in Hirota's bilinear method as a new dependent
variable (Matsuno 1984, Gibbon et al 1985). We remark that u2 (X, T), like u(X, T),
must also be a solution to (35). Hence, from subtracting the respective equations, we
obtain

(U - U2)t + (U - s2)3x + 2[( - U2)2 + 2Ut2 (t - U2)]X = 0. (36)

We now substitute for U - u2 from (34) into (36) and integrate once w.r.t. x. After a
little algebra and equating the coefficients of 0-' and 0- 2 we obtain the two nontrivial
relations:

OXT + a42XU2 + 464X = 0. (37a)

OXOT + CXU 2 + 4 X'03X - 3 02X = 0, (37b)
The coefficients of 0-s and - 4 identically vanish. Upon elimination of u 2 from (37)
and one integration w.r.t. X, we get

46T+ ('0; x I = ',38

where the Schwarzian derivatve (Hille 1976) is defined by

(4; X) = 3x 3 2X) (39)4$x 2 ox "

In (38) 1& may depend on T but is constant in X. We recall the property of Galilean
invariance of (38) : If 4(X, T; p) denotes the solution to (38), then

O(X,T;O) = O(X - I&T,T; ). (40)

2. This step involves the explicit to implicit transformation by interchanging the depen-
dent variable 0 and the independent variable X. This is effected by first recalling a'
property of the Schwarzian derivative (Hille 1976), viz.,

{0; X} X -* 2X{X; }. (41)

Together with the observations

Ox = --- T constant, (42)

and

OT OX XT ,(43)

9
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(38) may be recast into the form

_1
XT =A +-1 {xq}, (44)

with X = X(O,T).

3. Finally, we define a new dependent variable

1
W= x1 (45)

and study the evolution of w(4, T). We note that

WT XT = -W 2 XOT (46)
T x

2

which can be reexpressed, using (44), as

WT = -OW 2 - 212[WW2s + 1 O21

= W W30 - pw2.  (47)

Consider the special case wherepO = 0. Upon defining new variables

= 4, t = T, r(x,t) = w(O,T), (48)

we readily obtain the HD equation (9).

(ii) The Schwarzian transformation method.

The next conversion method from the KdV to the HD is partly motivated by the
inverse transformation due to Kawamoto (1985b). In essence, Kawarnoto's procedure
involves an implicit to explicit transformation to reduce the HD as in (9) to an in-
termediate equation similar to (38), and then using the Cole-Hopf transformation on
Ox to yield the mKdV equation. The Miura transformation finally links the mKdV
to the KdV.

To go from the KdV to the HD we will apply the above transformations in reverse
order to yield the intermediate equation (38). In that sense, this method differs from
(i) in the first step. We first use the Miura transformation to v(X, T)

u=v2 +i Vx, (49a)

followed by the Cole-Hopf transformation on the potential 4bx (X, T)

v=-i c " (49b)

10



After some tedious algebra, which has been performed using MACSYMA, we can
identify the relation

LI(OT + {; X}x) = 0 (50)

where the operator L, is given by

31 a3 32X 2  4 3X -02X_ 2 C
a X j-X( 3 -aX -ax" - -X3 ' i - - ) '  (51)

from which we recover the intermediate equation (38). With MACSYMA, we have
obtained yet another but equivalent representation of (50)

L 2 (± + {0;X}) = 0, (52)

with
L2= +2{0;X}) +{O;X}x). (53)

The latter operator is similar to the anti-symmetric Lax operator for the KdV, wherein
we have formally replaced u(X, T) by a multiple of {,O; X}.

Note that the successive transformations defined in (49) may indeed be combined to
give

U = -{0; X}, (54)
a

which is the Schwarzian transformation proposed by Ibragimov (1981, 1985). The
argument presented in Ibragimov's book may be summarised as follows : Suppose
there exists a transformation from (38) to the form

IFT + %3x + I@(T, Tx) = o (55)

having a nontrivial Lie-Bicklund algebra. Then (38) is equivalent to either a linear
equation with constant coefficients or the KdV equation. In our case, (49b) provides
the relevant transformation to the mKdV equation where T = v; 4' = Pv 2vx, which
is equivalent to the KdV through the Miura transformation (49a).

The subsequent steps for the transformation are identical to steps 2 and 3 in (i).

4.2. Transformation from the HD to KdV

Along the lines of Kawamoto (1985b), we convert the HD equation to the KdV through
the following three steps :

1. We first employ an implicit to explicit transformation by defining

x= [2 ,t)' =-t, (56)

11
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with R(X, T) = r(x(X, T), t(X, T)) representing the new transformed dependent vari-
able. We observe that

a- a +(-"r 2 , + Ir2 a

aT' R 2xR- !R a
" " (57a)

where use has been made of the HD equation (9) to replace all time derivatives of r
in terms of spatial derivatives, and that

a = 1 8 (57b)
TX R cX"

After a little algebra, Eq. (9) can be expressed as

,RT + R 3xR 2 - 3R 2xRxR + R = (58)
R 2

In the above derivation we have used the fact that r(z, t) and its spatial derivatives
tend to zero as zI --+ oo.

Before proceeding any further, we make the following remarks:
Remark 1 : The substitutions in (56) are equivalent to

Remar : Cmparig x(58 = (at)' T=t. (59)

Remark 2: Comparing (58) with (38), it may be readily recognized that

R = Ox. (30)

2. We now write RxR = (61)

and find VT (X, T) with the use of (58). It is easy to check that VT can be expressed
entirely in terms of v and its spatial derivatives through the mKdV equation

VT -- V 2VVX + Vax = 0. (62)

3. The Miura transformation
=--(V + 2vx) (63)

now relates (62) to the KdV equation (35). This may be readily verified by computing
UT from (63), using (62) to replace the time derivative(s) of v in terms of v and its
spatial derivatives, and finally reexpressing in terms of u.

12
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4.3. Connection between the respective eigenvalue problems

We will complete the connection between the HD and the KdV equations by pointing

out the link between their respective eigenvalue problems. To this end, we first employ
the implicit to explicit transformation described by (56), which is similar to the one

employed by Calogero and Degasperis (1982). The eigenvalue problem (1) for the HD

equation is then equivalent to

02xR - OxRx = -AO; (64)
R

where e(X;T) = ik(x(X,T);t(T)). Now defining

fl(X;T) = R-iP(X;T) (65)

and eliminating 0 from (64), we obtain

R2~ 3
f 2 X+ R2X + A]ln o, (66a)fX [2 R 4 R 2 - -

or, using (60),

O2X + X} + AJf = o. (66b)
2

Note that if we adopt the Cole-Hopf transformation (61), then (66a) may be also

written as
0 2X + (V 2 - 2vX) - .ln = 0 (67)

4
and thence as

0 2 x + [ii -,]fl = o, (68)

provided ii(X, T) is a solution to the KdV equation

iT - 6ffx + fi3X = O. (69)

Thus, we have transformed the eigenvalue problem for the HD to that for the KdV,

where the corresponding eigenfunctions 0b1 (= 9) and 0 are related through (65). The

explicit form for R(X, T) will be discussed in the following section.

5. Connections between the solutions of the HD and KdV equations

Using the knowledge of the connections between the HD and the KdV equations

discussed in the previous section, we shall proceed to transform the known solution(s) of

each equation to the solution(s) of the other. The transformation of the implicit solution

of the HD to explicit solution(s) of the KdV is more interesting and will be taken up first.
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We shall first apply the implicit to explicit transformation prescribed by (56) to the
cusp-solitary wave solution of the HD as in (33). From the latter equation

I = 1 + IE, (70)
r

hence, from (56),
X= X+E(X,t) (71)

since z + Vt + E(z, t), which is the argument of the tanh' function in (33a), tends to zero
as Iz + Vtj --. oo (see figure 1). Consequently, from (33a) and the definition of R as in
(56),

R(X,T) = tanh2[-(X X0 - VT)], (72)

where Xo(= zo) is a constant.

For later use, we will write down the expression for 4 from (60). Using (72), and one
integration w.r.t. X, we get

4 = x- XI(T) - 2tan[I--(X - Xo - VT)], -(73)
N/-V 2

where XI (T) is an integration constant.

From (61) and (72), we arrive at the singular solution to the mKdV equation (62)

v(X,T) = 2 /Vicosech[v'V'(X - Xo - VT)]. (74)

The solution to the KdV equation (35) may now be calculated using the Miura transfor-
mation (63). Straightforward algebra yields the familiar soliton solution

u(X,T) = 3Vsch [2 (X-Xo-VT)] (75)
a 2

An alternate solution of the KdV may be derived by starting from (73) and employing
the auto-Bicklund representation of u in terms of 4), as in (34). Indeed, since 4 should also
satisfy (38), it is readily checked upon substituting (73), that XI(T) = constant = X, and
& = 0. Now, u 2 can be computed using either of the relations (37a,b). This gives again
the one-solitary wave solution for U2, as in (75). Returning to (34), a new, but singular,
solution to the KdV equation reads

(X,T) - (X - XI)2 + 1)tanh2l[(X - X- VT)] - K(X- X ) (

-- (tanh[V (X- Xo- VT)]- -(X - X 1 ))2

We remark that the inverse process of transforming the familiar sech2 solution of
the KdV to that of the HD leads to, for instance, a rational solution r(z,t) = %-I(z - 1).
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Other possible solutions to the HD and the KdV equations are presently under investigation
(Banerjee and Hereman 1988b).

6. Conclusions

In retrospect, we have provided some straightforward derivations of the HD equation.
A direct integration method was used to derive a simple particular implicit solution. We
have consolidated the various links between the HD, the KdV and the mKdV equations,
and used these to provide connections between their solutions.

Although at this stage, the HD equation is more of theoretical significance than of ap-
plicative relevance, we hope that this paper contributes not only to provide a better insight
into cusp solitary waves, but also serves as a review on the HD equation. The straight-
forward mathematical techniques employed throughout this paper should prove helpful in
deriving implicit solutions to other nonlinear PDEs and in (as a spin-off) discovering new
solutions to the KdV equation. Work on this is currently in progress.
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